Unit 6 Review

Date

1) When you are simplifying exponents using the EXPONENT LAWS, remember the order that you need to follow: Please Make Delicious Ziti Now.

Which law does each letter stand for AND write the law's general form:

P-Power of a Power Law
$$\Rightarrow$$
 $(x^a)^b = \chi^{(a \cdot b)}$

D-Division Law
$$\rightarrow \frac{x^a}{x^b} = x^{(a-b)}$$

N-Negative Power Law
$$\rightarrow x^{-a} = \frac{1}{x^a}$$
 and $\frac{1}{x^{-b}} = \frac{x^b}{1}$

Simplify. Your answer should contain only positive exponents.

2)
$$\frac{x^{2}y^{2}}{2x^{-3}y^{-3} \cdot 3x^{2}y^{2}} = \frac{x^{2}y^{2}}{(6x^{-1}y^{-1})}$$

$$= \frac{x^{2}y^{2} \times y^{2}}{(6x^{-1}y^{-1})}$$

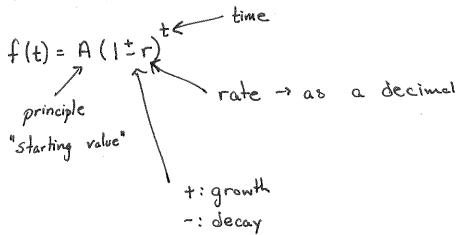
$$= \frac{x^{2}y^{2} \times y^{2}}{(6x^{-1}y^{-1})}$$

$$= \frac{x^{3}y^{3}}{(6x^{-1}y^{-1})}$$

3)
$$\frac{2a^{2}b^{-3} \cdot 3ba^{-3}}{3a^{-3}} = \frac{6a^{-1}b^{-2}}{3a^{-3}}$$
$$= \frac{6a^{3}}{3a^{1}b^{2}} = \frac{2a^{2}}{b^{2}}$$

4)
$$\frac{2u^{2}v^{4}}{(u^{-2}v^{-4})^{3}} = \frac{2u^{2}v^{4}}{u^{-6}v^{-12}}$$
$$= 2u^{2}u^{6}v^{4}v^{12}$$
$$= 2u^{8}v^{16}$$

5)
$$\frac{m^{-3}n^{-1}}{(2m^{3}n^{3})^{4}} = \frac{m^{-3}n^{-1}}{2^{4}(m^{3})^{14}(n^{3})^{14}}$$
$$= \frac{m^{-3}n^{-1}}{16m^{12}n^{12}} = \frac{m^{-15}n^{-13}}{16}$$
$$= \frac{1}{16m^{15}n^{13}}$$


6)
$$\frac{2xy'}{2x^{-4}y^{0} \cdot (xy^{0})^{0}} = \frac{2 \times y'}{2 \times y' \cdot 1 \cdot 1}$$
$$= \frac{2 \times y' \cdot x''}{2}$$
$$= \times 5y$$

7)
$$\frac{(2x^{3})^{3} \cdot (2x^{2}y^{4})^{-3}}{2x^{0}y^{-2}} = \frac{2^{3}(x^{3})^{3} \cdot 2^{-3}(x^{2})^{-3}(y^{4})^{-3}}{2 \cdot 1 \cdot y^{-2}}$$

$$= \frac{2^{3} \times 2^{-3} \times 2^{-3} \times 2^{-3} \times 2^{-3}}{2^{3} \cdot y^{-2}} = \frac{2^{3} \cdot x^{3} \cdot y^{-12}}{2 \cdot y^{-2}}$$

$$= \frac{x^{3}y^{-10}}{2} = \frac{x^{3}}{2y^{10}}$$

8) Write the exponential growth & decay function and explain what each variable represents.

9) What form is the rate always written out in?

The rate is always written as a decimal.

10) When would you use + and when would you use -?

+ -> Growth - -> becay

11) If the number of rabbits increases at a rate of 7.5% per month and you want to see how many rabbits there will be after 2 years, then what value will you use for the time?

t= 24 months

12) If the formula is $f(4) = 5100 \cdot 0.87^4$, then what is the percent change?

$$1-r=0.87$$
 $1=0.87+r$
 $-0.87-0.97$
 $0.13=r \rightarrow 13\%$

13) The duck population in Central Park increases by 12% each year. There are 1,780 ducks in the park right now. How many ducks will there be in 3 years?

A = 1780 C = 0.12 C =

14) Mister Mack won the lottery! He is going to invest \$10,000 dollars into a stock that gains 3 % interest every month. How much money will he have in 12 months?

A = 10.000 $f(12) = 10.000(1 + 0.03)^{12}$ f = 12 f = 12

15) The Bumble Bee population in North Dakota decreases at a rate of 32% a week in the fall. If there are 8,200 bees at the end of August how many will there be at the end of November (12 weeks later)?

f(12) = 8200 (1-0.32)12

A=8200 r=0.32 t=12 decay 16) Sally bought a brand new Mac computer. She paid \$2,800 for it. The computer depreciates at a rate of 11% a month. How much will the computer be worth in a year?

A = 2.800 r = 0.11 t = 12 decay $f(12) = 2800(1-0.11)^{12}$

17	Identify	each of the	following as	s exponential	growth or dec	av
1.7	LINCHILL	cacii oi uic	TOMO WIME as	o o o o o o o o o o o o o o o o o o o	EIOWILL OF GO	∠CIΥ

1.27 71 y=4,000(1.27)4 ____Growth 50

y=15(1+0.3)10 _ Growth 6/c b.

y=525(0.99)119_Decay 6 C 1299.0

6/c y=1,587(1-0.61)4 Decay

6/c 0.34 y=8,295(0.3)12 Decay

y=2(1.01)100 Growth b/c 1.0171 f.

y=431(.14)3 Decay b/c 0.14 4) g.

y=9,152(1+0.2)21 Growth b/c h.

0.8141 b/c y=72(0.81)19 <u>Becay</u>

18) Provide a definition for what it means to SIMPLIFY A RADICAL. Please remember to include the two aspects that we extensively discussed in class.

get the smallest # within the radical (1). the overall values remain the

19) Write the rules for combining radicals using each operation.

Addition & Subtraction --> Can only add or subtract if the number under the radical is the same

-> If different, then simplify to try to get the same

Multiplication -

-> Multiply coefficients

-> Multiply #'s within radicals

-> Simplify

Division -

-> Multiply the top & bottom by the radical in the denominator

-> Simplify.

Simplify.

20)
$$3\sqrt{5} + 2\sqrt{45}$$

 $3\sqrt{5} + 2\sqrt{9}\sqrt{5}$
 $3\sqrt{5} + 2\cdot 3\sqrt{5}$
 $3\sqrt{5} + 6\sqrt{5}$
 $9\sqrt{5}$

21)
$$3\sqrt{45} + 3\sqrt{20}$$

 $3\sqrt{9}\sqrt{5} + 3\sqrt{4}\sqrt{5}$
 $3\cdot 3\sqrt{5} + 3\cdot 2\sqrt{5}$
 $9\sqrt{5} + 6\sqrt{5}$
 $15\sqrt{5}$

22)
$$\sqrt{2} \cdot 3\sqrt{20}$$
 $3\sqrt{20 \cdot 2}$
 $3\sqrt{40}$
 $3\sqrt{4}\sqrt{10}$
 $3\cdot 2\sqrt{10}$
 $6\sqrt{10}$

23)
$$-5\sqrt{3}(\sqrt{10}-4\sqrt{3})$$

 $-5\sqrt{30}-20\sqrt{9}$
 $-5\sqrt{30}+20\cdot 3$
 $-5\sqrt{30}+60$

-5-

24)
$$\frac{2\sqrt{3}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}$$

$$\frac{2\sqrt{6}}{\sqrt{4}} = \frac{2\sqrt{6}}{2} = \sqrt{6}$$

$$25) \frac{\sqrt{10}}{3\sqrt{6}} \cdot \frac{\sqrt{6}}{\sqrt{6}} = \frac{\sqrt{60}}{3\sqrt{36}} = \frac{\sqrt{4}\sqrt{15}}{3\cdot 6}$$

$$= \frac{2\sqrt{15}}{18} = \frac{2\sqrt{5}}{\sqrt{15}}$$

26)
$$\sqrt{28x^4} = \sqrt{28}\sqrt{x^4}$$

$$= \sqrt{4}\sqrt{7}\sqrt{x^4}$$

$$= 2\sqrt{7} \times x^2$$

$$= 2x^2\sqrt{7}$$

27)
$$\sqrt{128r^3} = \sqrt{128'} \sqrt{r^3'}$$

= $\sqrt{64} \sqrt{2} \sqrt{r^2} \sqrt{r^4}$
= $8\sqrt{2} - \sqrt{r}$
= $8r\sqrt{2}r$

28)
$$5\sqrt{200r^3} = 5 \cdot \sqrt{200} \sqrt{r^3}$$

= $5\sqrt{100}\sqrt{2} \sqrt{r^2}\sqrt{r}$
= $5 \cdot 10 \cdot \sqrt{2} \cdot r \cdot \sqrt{r}$
= $50 r \sqrt{2r}$

29)
$$-5\sqrt{50n^3} = -5 \cdot \sqrt{50} \sqrt{n^3}$$

= $-5 \cdot \sqrt{25} \cdot \sqrt{2} \cdot \sqrt{n^2} \cdot \sqrt{n^3}$
= $-5 \cdot 5 \cdot \sqrt{2} \cdot n \cdot \sqrt{n^3}$
= $-25n\sqrt{2n}$

Challenge: Simplify.

30)
$$\frac{4+\sqrt{2}}{\sqrt{8}} \cdot \frac{\sqrt{8}}{\sqrt{8}}$$

$$4\sqrt{8}+\sqrt{16} \quad 4\sqrt{4}\sqrt{2} \cdot 4$$

$$= 42\sqrt{2}+4$$

$$8$$

$$= \sqrt{2}+4$$

$$8$$

$$= \sqrt{2}+4$$
or 8444
$$2\sqrt{2}+4$$

31)
$$\frac{\sqrt{5}-3}{5\sqrt{8}} \cdot \frac{\sqrt{8}}{\sqrt{8}} = \frac{\sqrt{40}-3\sqrt{8}}{5\sqrt{64}}$$

$$= \sqrt{4\sqrt{10}-3\sqrt{8}} = 2\sqrt{10}-3\sqrt{4}\sqrt{2}$$

$$= 2\sqrt{10}-6\sqrt{2}$$

$$= \sqrt{10}-3\sqrt{2}$$

$$= \sqrt{10}-3\sqrt{2}$$