OUADRATIC UNIT REVIEW

TOPIC 1: ALGEBRAIC SOLUTIONS TO QUADRATICS:

Solve each equation by factoring. Leave your answers as fractions if need be.

1)
$$m^2 + m - 42 = 0$$
 $\{6, -7\}$

$$\begin{cases} 6, -7 \\ 3) 6m^2 - 25m = -21 \end{cases} \left\{ \frac{7}{6}, 3 \right\}$$

$$2) -4r^2 + 5 = -5r^2 + 6r$$

$$\{5, 1\}$$
4) $3r^2 - 15 = 12r$
 $\{5, -1\}$

Solve each equation by completing the square. Round your answers to the nearest THOUSANDTH if needed.

$$5) \ x^2 - 8x - 65 = 0$$

$$\{13, -5\}$$

7)
$$-97 - 14n = -7n^2$$
 {4.854, -2.854}

6)
$$n^2 - 14n + 44 = 4$$

$$\{10, 4\}$$

$$\begin{cases}
 10, 4 \\
 8) 5x^2 + 18x - 66 = 4x^2 \\
 3.124, -21.124
 \end{cases}$$

Solve each equation with the quadratic formula. Round your answers to the thousandth place if needed

9)
$$-r^2 - 12r - 20 = 0$$

$$\{-10, -2\}$$

11)
$$7n^2 - 110 = 3n^2 - 10$$

 $\{5, -5\}$

10)
$$3x^2 + 7x - 76 = 0$$

$$\{4, -6.333\}$$

Find the discriminant of each quadratic equation then state the number and type of solutions.

13)
$$-4m^2 + 8m - 4 = 0$$

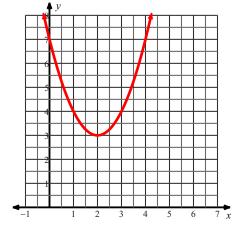
0; one real solution

15)
$$8v^2 + 3v + 4 = -5v$$

−64; two imaginary solutions

14)
$$-8r^2 + 6r + 5 = 0$$

196; two real solutions


16)
$$n^2 + 6n + 6 = n$$

1; two real solutions

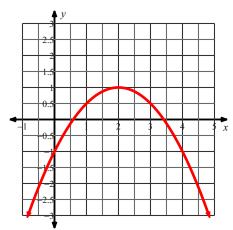
TOPIC 2: GRAPHING PARABOLAS AND IDENTIFYING THEIR PARTS

Use your graphing calculator to sketch the graph of the following parabolas and answer the accomanying questions.

17)
$$y = x^2 - 4x + 7$$

18) Fill in the following for the parabola in V: (2, 3) number 17:

AOS: x = 2


Roots: No Re

Vertex:_____

AOS:_____

ROOTS:

19) $y = -\frac{1}{2}x^2 + 2x - 1$

20) Fill in the following for the parabola in V: (2, 1) number 19:

AOS: x = 2Roots: x = 1.5

Vertex:

AOS:

ROOTS:

Find the VERTEX, AOS and ROOTS of the following quadratics ALGEBRAICALLY!!!!

DNE

21)
$$y = 2x^2 + 12x + 16$$
 V: (-3, -2)

AOS:
$$x = -3$$

23)
$$f(x) = \frac{1}{2}x^2 - 2x + 4$$
 Roots: $x = -2, -4$ v: $(2,2)$ aos: $x = 2$

Roots: No Real Roots

- 22) $y = 2x^2 + 4x + 6$ V: (-2,2)
- AOS: x = -224) $f(x) = -x^2 + 6x - 5$ Royts: (N) 4 Real Roots

Aos: x = 3Roots: x = 1, 5

TOPIC 3: FUNCTIONS AND MODELING

Answer the following quesitons for the given quadratic.

when x = 0, f(x) =_____ when x = 14, f(x) =_____

when f(x) = 10, $x = _____$ when f(x) = -2, $x = _____$ when f(x) = -5, x =

25) Fill in the blanks for $f(x) = 3x^2 - 6x + 1$ 106, 1, 505 -1 3 26) Fill in the blanks for $f(x) = -\frac{1}{4}x^2 + 5$

when x=-2, f(x) =_____ when x = 25, f(x) =____

when f(x) = -11, $x = _____$ when f(x) = 1, x =

Give an example of a fucntion value for which there are no posisble x values: f(x) =

Writing Quadratic Equations

- 27) The square of a positive number is 24 more than 5 times the number.
 - a. Write a quadratic equation that represents this situation using n = number.
 - b. Solve your eugation to find the value of the number.

28)	Rachel is six years older than her brother, Brian. The product of their ages is 667.
	a. Define a variable for this problem:
	b. Write a quadratic equation that represents this situation.
	c. Solve your euqation and clearly state the ages of both Rachel and Brian.29 and 23
29)	Find two consecutive EVEN integers whose product is 2024.
	a. Define a variable for this problem:
	b. Write a quadratic equation that represents this situation.
	c. Solve your euqation and clearly state the value of the integers. $44 + 46$
30)	The number of thousands of downlaods of a new song can be modeled by the function: $g(x) = -\frac{1}{4}x^2 + 4x + 1$ where x represents the number of weeks since the song is realed.
	a. What is the maximum number of downloads in one week?
	b. After how many weeks did the song reach it's maximum download amount?
	c. How many times was the song downloaded in week 1:, Week 2:, Week 3:
	What was the TOTAL number of downloads from week 1 to week 3?
	d. After how many weeks did the song stop getting downloaded?
	e. What is the total number of downloads for the song over the whole time?

a. 17,000 b. 8

c. 1 = 4.75, d. 23,500 e. about 16 of f. 186,000